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We numerically simulate the traveling time of a tracer in convective flow between two points~injection and
extraction! separated by a distancer in a model of porous media,d52 percolation. We calculate and analyze
the traveling time probability density function for two values of the fraction of connecting bondsp: the
homogeneous casep51 and the inhomogeneous critical threshold casep5pc . We analyze both constant
current and constant pressure conditions atp5pc . The homogeneousp51 case serves as a comparison base
for the more complicatedp5pc situation. We find several regions in the probability density of the traveling
times for the homogeneous case (p51) and also for the critical case (p5pc) for both constant pressure and
constant current conditions. For constant pressure, the first region IP corresponds to the short times before the
flow breakthrough occurs, when the probability distribution is strictly zero. The second region IIP corresponds
to numerous fast flow lines reaching the extraction point, with the probability distribution reaching its maxi-
mum. The third region IIIP corresponds to intermediate times and is characterized by a power-law decay. The
fourth region IVP corresponds to very long traveling times, and is characterized by a different power-law
decaying tail. The power-law characterizing region IVP is related to the multifractal properties of flow in
percolation, and an expression for its dependence on the system sizeL is presented. The constant current
behavior is different from the constant pressure behavior, and can be related analytically to the constant
pressure case. We present theoretical arguments for the values of the exponents characterizing each region and
crossover times. Our results are summarized in two scaling assumptions for the traveling time probability
density; one for constant pressure and one for constant current. We also present the production curve associated
with the probability of traveling times, which is of interest to oil recovery.

DOI: 10.1103/PhysRevE.67.056314 PACS number~s!: 47.55.Mh, 05.60.Cd, 64.60.Ak
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I. INTRODUCTION

The problem of oil extraction from a reservoir and ho
this extraction evolves in time, is of significance to oil com
panies. In order to maximize profits, they must be able
predict how much oil is recoverable from a reservoir ove
given period of time. This problem can be approached sc
tifically by devising a model that accurately predicts the b
havior of oil during the extraction process.

Most oil reservoirs are complicated geological structu
@1# composed of several kinds of rock that have been dep
ited over a long period of time. The configuration of th
structure has usually been altered by tectonic activity
mineral deposition by aquifer flow. For our purposes,
types of rock comprising any oil reservoir can be separa
into two categories: high permeability~conducting! and low-
permeability~insulating!. The location of both the conduct
ing and insulating rocks is random but also nontrivial, i.
during extraction it is only through the conducting rock th
the flow of oil occurs.

Based on the random spatial location of the conduct
rock, a simplifying procedure that has emerged in attemp
to predict oil extraction is to model the reservoir by a bo
percolation cluster with occupation probabilityp @2–20#. The
value ofp corresponds to the fraction of conducting rock
1063-651X/2003/67~5!/056314~16!/$20.00 67 0563
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total rock of the reservoir. This captures the essential featu
of the reservoir, while avoiding some of the noncrucial co
plications. An additional advantage to this approach is tha
makes available to the analysis of oil recovery the wealth
information pertaining to percolation theory. However, w
must caution the reader that these approximations canno
taken as the definitive description for oil reservoirs. It is w
known@21–25# that true field-size porous media possess c
relations. Our description merely represents a first-order
proximation, which can serve as a base for more compreh
sive studies.

To fully explain the flow of oil in a percolation cluster
several physical and geometric parameters of percola
have been explored. Among them, there is work on the sh
est path in a percolation cluster@9,11,13,26–33#, the average
flow time of a fluid inside a cluster@34#, and the full prob-
ability distribution of flow time inside a cluster for relativel
short times@12#. The multifractal nature of flow inside a
cluster has also been the subject of a number of pa
@35,36#.

In this work, we focus on one particular technique of o
extraction used by companies: secondary oil extraction
consists in injecting a fluid~water, carbon dioxide or meth
ane! into the reservoir in order to displace the oil trapp
inside. The fluid is injected through an injection well, locat
©2003 The American Physical Society14-1
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at pointA of the reservoir, and the mixture of fluid and oil
collected at pointB of the reservoir, where an extraction we
is placed. The distance between the wells is known as
interwell space r. Inside the reservoir medium, a mixture
two fluids is formed, driven by a pressure difference betwe
wells A and B. Here, we consider the case when the t
fluids have equal viscosities and are both incompressi
and thus can be considered as identical miscible fluids.
fluids of different viscosities, see Refs.@37–41#. To predict
the amount of oil obtained at a given time, one must und
stand the evolution of this flow. In particular, it is importa
to know how long the injected fluid starting atA requires to
reachB. Since the flow on the reservoir occurs in the set
paths that connectA andB, knowledge of thetraveling time
t ~also known in the literature as first-passage time! on all the
paths in the reservoir determines how much of the displac
fluid has reachedB at a given time and, therefore, what pe
centage of the extracted mixture still corresponds to oil.

Some progress has been made in the study of this p
lem. The case of homogeneous flow~with p51), when the
reservoir is only composed of conducting rock, has be
treated in Ref.@15#. Also, the convective and diffusive re
gimes of a more realistic nonhomogeneous reservoir~specifi-
cally at criticality p5pc) have been considered@12,13,15#.
The time it takes for any amount of the injected fluid to rea
B, called the breakthrough timetbr , was analyzed in Refs
@12,13#. The case of different viscosities for the injected a
displaced fluids has been studied before, both for a fi
value of the viscosity ratio@39–41#, and in the limit of very
high ratio@37,38#. In the latter case, a behavior analogous
diffusion-limited aggregation in percolation is found.

In this paper, we analyze analytically and numerically t
flow inside a two-dimensional~2D! bond percolation cluste
for two different occupation probabilities (p51 and p
5pc) and under two different pumping conditions atA: con-
stant current and constant pressure. The quantity measur
the probability distribution of the traveling timet of tracer
particles after breakthrough in a percolation ensemble, fo
given interwell spacer, and a reservoir of linear dimensio
L. These measurements ultimately allow us to write the pr
ability distributions in concise expressions, valid for all t
conditions studied here.

In Sec. II, we introduce the basic mathematical quantit
the probability density of traveling times and the producti
curve, and relate them to the physical picture. Section
deals with the homogeneous casep51, which serves as a
template to understand the more complicated 0,p,1 case.
Section IV introduces the inhomogeneous model at critica
to be used, while Sec. V recounts the numerical results of
model. In Sec. VI, we present analytical arguments expla
ing the behaviors observed in Sec. V and these argument
then used to present the final forms for the probability d
tributions under both constant current and constant pres
conditions.

II. PRELIMINARY CONCEPTS

In secondary oil extraction, a fluid~typically water! is
injected into the reservoir through an injection or pumpi
05631
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well A, pushing oil trapped inside toward the extraction w
B. We call any infinitesimal fluid element of water atracer.
The time it takes a tracer to travel fromA to B is called the
traveling time t. For each possible configuration of the re
ervoir, there are generally many possible paths to travel fr
A to B and each of these paths is called astreamline. Because
of the multiplicity of streamlines, each particular tracer th
starts atA, in general, requires a different timet to reachB.
The breakthrough timetbr corresponds to the time when th
first water stream reachesB for a given realization. We define
P(t,r ,L)dt as the probability that a tracer crosses fromA to
B in a time betweent and t1dt, with the condition thatA
andB are separated by a distancer, in a reservoir of linear
size L. The functionP(t,r ,L) is averaged over all possibl
reservoir configurations connecting the wells. Physically
represents the fraction of water thatbecomespart of the ex-
tracted mixture at timet. Note that whent,tbr , P(t,r ,L)
50 and the mixture corresponds to oil only. Fort>tbr , cer-
tain tracers begin to reachB, andP(t,r ,L).0, giving a mix-
ture of oil and water atB. As t→`, P(t,r ,L)→0, because
no new streamlines reachB and this well produces only wa
ter. Cost constraints dictate the point at which the use of
well is terminated.

From our knowledge ofP(t,r ,L), assuming that the
streamlines do not change over time, we can determine
average production curve C(t,r ,L), which is the ratio of oil
contained in the mixture coming out of the extraction well
time t,

C~ t,r ,L ![12E
0

t

P~ t̃ ,r ,L !d t̃. ~1!

Equation~1! exhibits the expected features of the mixtur
initially P(t,r ,L)50 and only oil comes out, giving
C(t,r ,L)51. As t increases,C(t,r ,L) begins to decay as a
function of the number of streamlines that reach the extr
tion well. As t→`, all water streamlines reach the extractio
well andC(t,r ,L)50.

For a reservoir being exploited with a pressure differen
betweenA and B, such that the total current between the
two points isQ, the total amount of oil,S, contained inside
the reservoir can be determined by the expression

S5QE
0

`

C~ t !dt. ~2!

Assuming oil is incompressible and using units for which
density is equal to 1,Salso represents the accessible volum
of the reservoir. Inserting Eq.~1! into Eq.~2! and integrating
by parts, we obtain

S

Q
5E

0

`

dtS 12E
0

t

P~ t̃ ,r ,L !d t̃ D 5E
0

`

tP~ t,r ,L !dt5^t&.

~3!

This result corresponds to theequal-time theorem, which
states that the average traveling time of tracers inside
4-2
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reservoir is equal to the available reservoir volume divid
by the total external current@15,42#. Equation~A3! of the
Appendix represents the same result, applied to a reservo
which all the sand is conducting.

III. HOMOGENEOUS CASE

The homogeneous case (p51), which can be analytically
solved, serves as a guide for the more realistic, nonana
critical percolation threshold case (p5pc). The p51 case
was studied in Ref.@43# using differential equations. Here
we obtain the solutions by conformal mapping, reproduc
the results of Ref.@43#, and add the particular form of th
production curve for the timest right after the breakthrough
This section contains the main results of the time behav
but the derivations are located in the Appendix. One of
results obtained there is thatt carries units ofr 2 and, there-
fore, in the following,t is replaced by a scaled variable

t8[
t

r 2 . ~4!

We assume that the reservoir is a circle of diameteL
centered at the origin and the two pointsA andB are located
at (2r /2,0) and (r /2,0). We study the production curv
C(t,r ,L). The ratioL/r is represented byl. Usingt8 andl,
the production curveC(t,r ,L) for a givenr andL is

C~ t8,l![C~ t/r 2,1,l!5C~ t,r ,L !, ~5!

where we have made use of Eq.~A12!, which expresses the
scaling rule ofC(t,r ,L) under rescaling oft to t/r 2. For the
sake of brevity, we refer toC(t8,l) asC(t8).

Originally, the reservoir is filled with one kind of fluid
~oil!. At time t850, we start to inject at pointA, with con-
stant rate, a different fluid~water!. We measure the produc
tion curve C(t8) at well B ~Fig. 1!. We assume that both
fluids are incompressible and have zero viscosity. The flow
then described by Darcy’s LawvW 52k¹W P and ¹2P50. A
set of regions, and two transition timest1/28 andt,8 separating
these regions, appears for the production curveC(t8). We
now present them.

(1) Region IH. Before t85tbr8 (l), the concentration of in-
jected fluid at pointB is zero and only oil exits through poin
B. We denote this time region, whent8<tbr8 , as region IH .

(2) Region IIH. When the injected fluid reaches the pr
duction well, the concentration of the displaced fluid rapid
drops immediately after breakthrough as

C~ t8!;12K~l!At82tbr8 . ~6!

This behavior occurs untilt85t1/28 (l), when a new time de-
pendence sets in. The time regiontbr8 ,t8<t1/28 is defined as
region IIH .

(3) Region IIIH. If l@1, for timest8.t1/28 there exists a
region of power-law decay@43#,
05631
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C~ t8!;t821/3. ~7!

We call this region IIIH . It is present at timest1/28 ,t8<t,8,
wheret,8(l) is defined below.

(4) Region IVH. At the transition timet,8(l), the reservoir
is almost exhausted of oil andC(t8) decays exponentially a

C~ t8!;exp„2~ t82to8!/t,8…, ~8!

whereto8(l) is given by Eq.~A19!. This is region IVH and it
is present inC(t8) for all l.1, for times t8.t,8. For l
51, C(t8,1)52C(2t8,`)21 and the reservoir is completel
exhausted at (1/2)t1/28 (`).

(5) Transition times t1/28 and t,8. Regions IIH and IIIH are
separated by a transition orcrossovertime t1/28 (l), given by
Eq. ~A16!. Regions IIIH and IVH are separated by the cros
over time t,8(l), given by Eq.~A18!. For l;1, the two
crossover times become of the same order, and region IIIH is
no longer present. However, asl→`,

t1/28 ~l!→1/2 ~9!

and @43#

t,8~l!;ldl ~dl53!. ~10!

FIG. 1. Production curves for the homogeneousp51 case in
logarithmic scale forl52, 3, and 10. The solid curves superim
posed to the production curves indicate the asymptotic behavio
regions IIH , III H , and IVH . All the solid lines have been calculate
using the results in the Appendix. For region IIH , Eq. ~A10! is used
with K given by Eq.~A15!; for region IIIH , Eq. ~A11! is used, and
for region IVH , we applied Eq.~A20!. The full circle indicates the
transition timet1/28 and the empty circle indicatest,8.
4-3
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That is, asl increases, region IIIH appears and the transitio
time between IIIH and IVH scales as a cubic function of th
geometric factorl.

IV. MODEL FOR THE INHOMOGENEOUS CASE

We represent the reservoir as a two-dimensional bond
colation cluster and choose points (2r /2,0) and (r /2,0), de-
noted byA and B, respectively, to be the injection and e
traction well positions. PointsA and B are separated by
geometric distancer and the system box has corners a
(6L/2,6L/2). We construct a percolation cluster by remo
ing bonds of a squareL3L lattice with probability (12p).
Equivalently, each bond of the lattice is conducting w
probabilityp and insulating with probability 12p. We simu-
late the flow if the pointsA andB belong to the same con
ducting cluster. Otherwise, we discard the configuration.
restrict our simulations to the critical bond percolation pro
ability p5pc50.5 @2#. We consider both spanning cluste
and finite clusters, and perform averages over 104 realiza-
tions of the medium.

To model the flow of water, we use the analogy w
electrical circuits, where for each bond, the pressure d
corresponds to the voltage difference and the flow co
sponds to the electrical current on the bond. A pressure
ference between pointsA andB drives the tracer. We choos
the value of the pressure difference according to the co
tions desired: for constant pressure, we set a pressure d
ence of 1 betweenA andB for all realizations of the medium
for constant current, we first measure the resistanceR of the
realization, and the pressure drop is chosen to be equalR,
so that the current for the realization is 1. For each real
tion, 104 tracers are introduced at pointA and then collected
at point B. The set of all bonds with nonzero current co
tained in the percolation cluster for each particular reali
tion defines the backbone of the cluster and the backb
massMB is the number of bonds that constitute this bac
bone.

Mathematically, the ‘‘pressure’’ difference across bonds
equivalent to a ‘‘voltage’’ difference, so by solving Kir
choff’s laws on the backbone, we obtain the potential~pres-
sure! dropsDP over all bonds for a given realization. For
node havings outgoing bonds, the tracer selects each bo
with a probability

wi j 5
DPi j

(
j

DPi j

@ j 51, . . . ,s and i 51, . . . ,MB#.

~11!

Here indexi is over theMB nodes andj is over thes outgo-
ing bonds, i.e., the bonds for which the pressure at the n
i is larger than the pressure at the other node of the bond
incoming bonds,wi j 50. The time necessary to cross ea
bond ist i j 51/DPi j and the velocity isv i j 5DPi j since each
bond has unit length. The total traveling time of a tracer
the sum of the times corresponding to all the bonds of
path connectingA and B, chosen by this tracer. Since th
05631
r-

-

e
-

p
-

if-

i-
er-

-

-
ne
-

s

d

de
or

s
e

particles do not interact with each other, it is equivalent
launching one particle at a time into the cluster. This pro
dure is known asparticle launching algorithm@15,44#.

We determine the probability distribution of the travelin
times P(t,r ,L) by counting the number of particles tha
travel from pointA to pointB, separated by a distancer in a
box of linear sizeL, in a time betweent and t1dt, over all
the particles and all realizations of the medium simulated

V. RESULTS FOR THE INHOMOGENEOUS CASE

Following earlier work@13#, and in a similar way to Sec
III, we define scaled timestP andtC to study the flow at both
constant pressure and constant current conditions. For
stant pressure, the scaled time istP[t/r dB1m̃ and for con-
stant current it istC[t/r dB, wheredB is the backbone fracta
dimension andm̃ is the characteristic exponent of the res
tivity dependence on distance. The current values for th

FIG. 2. ~a! Probability distribution of traveling times for con
stant pressure conditions forl532. Three simulations are pre
sented, forL5258,514,1026.~b! Probability distribution of trav-
eling times for constant current conditions forl532. Three
simulations are presented, for sizesL5258,514,1026.
4-4
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TABLE I. Theoretical exponents and exponents obtained by simulation for all the regions and cros
for functionsP(tC) andP(tP). Exponentsg (1), g (2), dR , andd3 are defined in Sec. VI and their numeric
values along with their proposed theoretical values can be found in Table II. The value of exponentg (2) was
obtained as the average~avg.! over three simulations, havingL5258,514,1026.

Constant current
Region Theory Simulation

III C
gC

(1)5min$~dR1gR22!/~dR21!,g(1)%

5min$1.7060.13,1.7460.15%
1.5660.01

IVC(l'32)
gC

(2)5min$~g(1)21!dR2gR12,g (1)%

5min$1.8060.40,1.7460.15%
1.7560.01

IVC (l→`) gC
(2)→gC

(1)'1.5660.01 N/A
VC gC

(3)5g (2)521a/ log10L 2.4560.04 ~avg.!
CrossovertC

(1) dC
(1)5d3(dR21)/dR51.7360.07 1.7460.05

CrossovertC
(2) dC

(2)5d352.8460.10 2.9060.09

Constant pressure
III P gP

(1)5(dR1gR21)/dR51.4360.08 1.4160.01
IV P gP

(2)5g (2)521a/ log10L 2.4360.06 ~avg.!
CrossovertP dP5d352.8460.10 2.7860.15
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exponents aredB51.643260.0008 andm̃50.982660.0008
@34,45#. Under these new variables, we can define, in an
ogy with the homogeneous case@Eqs. ~5! and ~A12!#, two
new probability distributions:

P~ tC ,l![P~ tC5t/r dB,1,l! ~12!

for constant current conditions and

P~ tP ,l![P~ tP5t/r dB1m̃,1,l! ~13!

for constant pressure. FunctionsP(tC ,l) and P(tP ,l) are
independent ofr and L, as reflected by the notation, bu
depend only on the ratiol. Below, we refer toP(tP ,l) as
P(tP) and toP(tC ,l) asP(tC), with the understanding tha
these functions are still dependent onl. The two log-log
plots, Figs. 2~a! and 2~b!, contain three simulations eac
corresponding to the probability distributionsP(tP) and
P(tC), respectively; both plots were prepared usingl532
and system sizesL5258,514,1026. The curves overlap
both the constant pressure and constant current cases, w
imply the scaling properties

P~ tC ,l!5r dBP~ t,r ,L ! ~14!

and

P~ tP ,l!5r dB1m̃P~ t,r ,L !. ~15!

A set of regions with different behaviors appears in the t
distributions. For the constant pressure distributionP(tP),
we encounter the following.~1! Region IP, which corre-
sponds to times smaller than the breakthrough time, be
water reaches the extraction well;~2! region IIP, appearing
when the first water streams reachB and ending at the onse
of a constant slope region, including the maximum ofP(tP);
05631
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~3! region IIIP, characterized by a constant value of t
slope, defined as2gP

(1) , of value21.4160.01; and~4! re-
gion IVP, which corresponds to another constant slope,
fined as2gP

(2) and measured to be22.4360.06. The scaled
crossover time from region IIIP to region IVP is calledtP .

The results for the constant current distributionP(tC) are
similar to those of constant pressure. However, there i
difference in that there is yet another constant slope reg
present. Consequently, we have~1! region IC, for times be-
fore breakthrough;~2! region IIC, corresponding to times
right after breakthrough and until the first constant slope
gion appears, including the maximum ofP(tC); ~3! region
III C, corresponding to a first slope, denoted by2gC

(1) , of
value 21.5660.01; ~4! region IVC, for a second slope
2gC

(2) , with a value of21.7560.01 for l532, but with a
heavy dependence with respect tol; and~5! region VC, with
a slope represented by2gC

(3) , measured to be22.45
60.04. The scaled crossover time between IIIC and IVC is
defined astC

(1) and between IVC and VC , astC
(2) . All these

values are presented in Table I.
Next, we present simulations for the probability distrib

tions of traveling times for both constant current and co
stant pressure and fordifferentl values~Fig. 3!. As before,
the distributions have two constant slope decay regions
constant pressure and three for constant current. Howeve
l changes, the positions of these regions change as well.
detailed shapes ofP(tP) and P(tC) can be determined by
studying their successive slopes, shown for constant pres
conditions in Fig. 4~a!, and for constant current in Fig. 4~b!.
It is worth noting that regions IIIC and IVC become shorter
asl decreases, with region IIIC disappearing forl<4, and
region IVC for l<2.

Another set of quantities studied are the times for wh
the slopes cross over between regions. These crossover
4-5
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are indicated by ellipses and boxes in Figs. 4~a! and 4~b!. For
the case of constant pressure, Fig. 5 shows the scaling o
crossover timetP with respect tol, found to betP;ldP

with dP52.7860.15. For constant current, Figs. 6~a! and
6~b! show two crossover timestC

(1) andtC
(2) , which scale as

tC
(1);ldC

(1)
and tC

(2);ldC
(2)

with dC
(1)51.7460.05 anddC

(2)

52.9060.09, respectively. The positions of the crossov
times have been determined by finding the positions of
inflection points of the successive slope plots.

Of practical interest is the production curve for consta
current conditions~Fig. 7!, because it supplies a tool fo
estimating the oil production efficiency. This curve is o
tained by using Eq.~1!, from the probability distribution of
P(tC) @shown in Fig. 3~b!#.

VI. DISCUSSION

The distributions of traveling time under constant curre
and constant pressure conditions are connected to one

FIG. 3. ~a! Probability distribution of traveling times for con
stant pressure conditions for system sizeL5514. Four simulations
are presented, forl54,8,16,32. ~b! Probability distribution of
traveling times for constant current conditions for system sizeL
5514. Four simulations are presented, forl54,8,16,32.
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other. By definition,tP5(R̃/r m̃)tC , with R̃ being the resis-
tance of a percolation cluster@2,5#, which is defined opera-
tionally as the voltage obtained between pointsA and B
when a current of value 1 is present. The probability tha
percolation cluster at the critical concentrationpc has resis-
tanceR̃ is given by F̃(R̃)dR̃, and can be seen in Fig. 8
Approximately,F̃(R̃) is given by

F̃~R̃!;H 0, R̃<R̃min

R̃2gR, R̃min,R̃<R̃max @gR52.1060.20#

0, R̃.R̃max,
~16!

FIG. 4. ~a! Successive slopes for the probability distribution
traveling times for constant pressure conditions for system sizL
5514 ~shown in Fig. 3!. Four simulations are presented, fo
l54,8,16,32.~b! Successive slopes for the probability distrib
tion of traveling times for constant current conditions for syste
sizeL5514. Four simulations are presented, forl54,8,16,32.
4-6
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with R̃min;r m̃ and R̃max;L m̃. The labels forR̃min as mini-
mum resistance, and forR̃max as maximum resistance, refle
the scaling rules ofR̃ with respect to the linear sizex of a
cluster, i.e.,R̃;xm̃ @2#. Therefore, since the interwell dis
tance isr, r m̃ represents the typical minimum value of res
tanceR̃min . The maximum resistance is determined by t
system size and it scales asL m̃. FunctionF̃(R̃) is not strictly
zero for R̃<R̃min or R̃.R̃max, but this is an acceptable ap
proximation in our theory. All the results we present f
F(R̃) are in agreement with previous work@13,46#.

As with the rescaled times, we find it convenient to defi
a scaled resistanceR5R̃/r m̃ @13# and an associated probab
ity F(R)[r m̃F̃(R̃5Rrm̃). FunctionF(R) obeys the same
scaling asF̃(R̃) @it satisfies Eq.~16! dropping the tilde sign#.
Quantity Rmin[R̃min /r m̃ now becomes geometry indepe
dent andRmax[R̃max/r m̃ scales asRmax;lm̃.

The redefined resistanceR reduces the relation betweentP
and tC to tP5RtC . Thus,P(tPuR) and P(tCuR) are related
by P(tCuR)dtC5P(tPuR)dtP and give

P~ tCuR!5RP~ tPuR!. ~17!

Hence, the knowledge of one distribution enables us to
culate the other.

We focus onP(tP) initially. We consider parameterR, the
scaled resistance of the cluster, as the relevant physical q
tity dominating the properties ofP(tP). Therefore, we nu-
merically find P(tPuR)dtP , which corresponds to the prob
ability that a tracer particle travels between pointsA andB in
a cluster with resistanceR ~more formally, with resistance
within the rangeR to R1dR). FunctionP(tP) can be con-
structed by the convolution

FIG. 5. Crossover times from region IIIP to region IVP for
constant pressure conditions, with a system size ofL
5258,514,1026 andl54,8,16,32.
05631
e

e

l-

an-

P~ tP!5E P~ tPuR!F~R!dR. ~18!

FunctionP(tPuR), seen in Fig. 9, is obtained from the simu
lation of a system withL51026 andr 532, or equivalently,
with l532. Each curve represents a different value of
resistanceR. The detailed behavior of theP(tPuR) has sev-
eral features. The function reaches a maximum at time

tP* ;RdR @dR52.5760.02#, ~19!

as seen in Fig. 10. The scaled crossover time between
two power-law regions in Fig. 9, defined by the notationtP

3 ,
occurs at equal time for all the curves, which indicates tha
is independent of resistanceR. However, we have performe
other simulations with different values ofl, and have found
that

FIG. 6. ~a! Crossover times from region IIIC to region IVC for
constant current conditions, with system sizesL
5258,514,1026.~b! Crossover times from region IVC to region
VC for constant current conditions, with system sizesL
5258,514,1026.
4-7
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tP
3;ld3 @d352.8460.10#. ~20!

RegiontP* <tP,tP
3 is characterized by a power-law decay

changing slope2g (1) in the log-log plot~Fig. 9!. For times
tP close totP* , the slope presents a value close to22, and as
tP→tP

3 , the value gradually changes to21.6 ~see Fig. 11!.
Additionally, as becomes apparent in Sec. VI E,g (1) is also
l dependent, a fact that affects the value of exponentgC

(2) .
We do not have a satisfactory explanation for this time
pendence ofg (1), but as a first order approximation, in wh
follows, we assume it to be a constant, of valueg (1)51.74
60.15, with the value given by its average over rangetP*
<tP,tP

3 . The second region in Fig. 9, for timestP>tP
3 , is

characterized by a slope of valueg (2)52.4160.04. In ana-
lytical form, P(tPuR) can be approximated as

FIG. 8. Probability densityF̃(R̃) vs R̃ for a simulation with
system sizeL51026 andl532.

FIG. 7. Production curve for system sizeL51026, under con-
stant current conditions. Four interwell distances have been u
for l54,8,16,32.
05631
-

P~ tPuR!;H 0, tP,tP*

tP
2g(1)

, tP* ,tP,tP
3 @g (1)51.7460.15#

tP
2g(2)

, tP.tP
3 @g (2)52.4160.04#.

~21!

Taking P(tPuR) to be identical to zero fortP,tP* , although
an approximation, simplifies our calculations considera
and does not affect the validity of our results. In fact, this
a very good approximation since there are very few trac
reaching wellB in this time range, which means that the
statistical contribution is negligible. This simplifying as

FIG. 10. Scaling of the maximumtP* (R) of the probability
P(tPuR) vs the resistanceR, for a system sizeL51026, and inter-
well distancer 532 ~l532!. The quantitytP* (R) scales withR as
RdR, with dR52.5760.02.

d,
FIG. 9. Probability distributionP(tPuR) vs tP5t/r dB1m̃ for sys-

tem sizeL51026 and interwell spacingr 532 (l532), under con-
stant pressure conditions. The most probable traveling timetP* and
the crossover timetP

3 are indicated for the curve corresponding
R564.
4-8
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sumption is repeated below forP(tCuR). The actual behavior
of P(tPuR) for tP,tP* has been studied in detail before@13#,
where it was found to be that of a stretched exponen
carrying negligible statistical weight in our present calcu
tions. In Sec. VI E, we incorporate this result into the fu
scaling ansatz forP(tP) andP(tC). The numerical values o
the exponents ofP(tPuR) and F(R) are summarized in
Table II.

The similarity in the values ofdR and the combination
11dB /m̃ is worth some consideration. It has been propo
elsewhere@12# that under constant current conditions, t
unscaled most probable traveling time scales with respec
r as r dB. Now, for a fixed value of resistanceR, at constant
pressure conditions (tP5RtC), we expect the unscaled mo
probable traveling time to scale asr dB1m̃, where scaling rule
R̃5Rrm̃ has been used. These considerations justify

FIG. 11. Successive slopes forP(tPuR), with a system sizeL
51026 andl532. The region corresponding to slopeg (1) of
P(tPuR) varies in value, as indicated by the horizontal lines, b
tween 21.60 and22.00. The second slopeg (2) reflects a more
constant behavior, with value 2.4160.04.
e
pr

05631
l,
-

d

to

r

choice of rescaled times. SinceR̃;r m̃, we can assume tha
the most probable traveling time at constantR̃ scales as
R̃11dB /m̃ and thus,dR5dB /m̃11. By similar arguments re-
garding the longest possible tracer trajectories inside the
tem, the unscaled crossover time can be related toLdB1m̃,
indicating thattP

3;ld3 would haved3 be equivalent todB

1m̃. However, our numerical simulations do not have su
cient accuracy to answer this question definitively.

The properties just described forP(tPuR) and use of Eq.
~18! determine the form ofP(tP) as we now prove for each
separate region identified in Figs. 2~a! and 2~b! ~see also Sec
V!. The analytical expressions for all the predicted expone
pertaining to the distributionP(tP) and their numerical val-
ues are given in Table I.

A. Region III P

To useP(tPuR) for the calculation ofP(tP ,l), according
to Eq. ~18!, we need to take into account its normalizatio
factor, which isR dependent. To obtain this factor, we int
grate the distribution and equate it to unity, using the follo
ing assumptions:P(tPuR) is strictly equal to zero for times
tP,tP* ;RdR and, as a consequence of the previous con
tion, the lower limit of integration istP* ;RdR. The final form
of P(tPuR) is

-

TABLE II. Exponents of functionsP(tPuR) and F(R) deter-
mined through simulations, and also their proposed theoretical
ues. The symbol N/A represents not available. The value of
exponentg (2) was obtained as the average~avg.! over three simu-
lations, havingL5258,514,1026.

Exponent Theory Simulation

g (1) N/A 1.7460.15
g (2) 21a/ log10L 2.4160.04 ~avg.!
dR dB /m̃1152.67260.002 2.5760.02

d3 dB1m̃52.625860.0011 2.8460.10

gR See Ref.@13# 2.1060.20
P~ tPuR!;5
0, tP,tP*

1

RdR
S tP

RdR
D 2g(1)

, tP* ,tP,tP
3 @g (1)51.7460.15#

RdR~g~1!2g~2!!

RdR
S tP

RdR
D 2g(2)

, tP.tP
3 @g (2)52.4160.04#.

~22!
on
RegardingF(R), its normalization has no impact on th
variables in which we are interested and is therefore not
sented.

To perform the integration of Eq.~18!, we must first
e-
define the limits of integration inR that apply to region IIIP .
The R dependence of functionP(tPuR) is contained in its
normalization factor, and also in the fact that this distributi
is nonzero whentP.tP* ;RdR. Therefore, for a given time
4-9
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tP , the integrand of Eq.~18! is nonzero for allR,tP
1/dR . The

lower limit of the integral isRmin , but it is irrelevant as
regards thetP scaling form. For functionP(tPuR), only the

first scalingtP
2g(1)

is used, since region IIIP is limited to tP

<tP
3 . Then, using Eqs.~16!, ~22!, and the convolution Eq

~18!, we obtain

P~ tP!;tP
2g(1)E t

P

1/dR

R2dR(2g(1)11)R2gRdR ~23!

for tP<tP
3 . After integration, the exponent oftP is positive,

which implies that the leading term for the integral is t
upper limit of integration. Substituting this limit yields th
scaling form tP

(12dR2gR)/dR . Therefore, since in region IIIP

the scaling isP(tP);t
P

2gP
(1)

, we obtain

gP
(1)5

gR1dR21

dR
. ~24!

B. Region IVP and crossover timetP

For timestP.tP
3 , distributionP(tPuR), regardless of the

value of R, decays with a power-law oftP
2g(2)

. The upper
limit of integration is determined by the largest resistan
possible within the conditions of the geometry, which w
denote byRmax, and it is independent oftP . Therefore, by
convolution Eq.~18!, we obtain
m

ee
e

t o
a

05631
e

P~ tP!;t
P

2gP
(2)

5tP
2g(2)

, ~25!

giving

gP
(2)5g (2). ~26!

The actual numerical value ofgP
(2) is discussed in Sec. VI D

The crossover timetP
3 separates regions IIIP and IVP .

Therefore,tP5tP
3 , which implies that

tP;ld3 ~27!

and

dP5d3 . ~28!

C. Mapping betweenP„tP… and P„tC…

Based on Eq.~17!, the differences observed in the curv
for P(tP) andP(tC) are caused by a shift of curveP(tPuR)
on a log-log plot by2 log R. Function P(tCuR), defined
from P(tPuR) by Eq. ~17!, is characterized by two power
law decays with exponents2g (1) and2g (2), a maximum at
time tC* [tP* /R;RdR21, and a scaled crossover time betwe
the two power-law regions attC

3[tP
3/R;R21tP

3 . In analyti-
cal form,P(tCuR) can be approximated by an equation sim
lar to Eq.~22!,
P~ tCuR!;5
0, tC,tC*

1

RdR21 S tC

RdR21D 2g(1)

, tC* ,tC,tC
3 @g (1)51.7460.15#

RdR~g~1!2g~2!!

RdR21 S tC

RdR21D 2g(2)

, tC.tC
3 @g (2)52.4160.04#,

~29!
r

w

I
.

where the normalization factor has been obtained by assu
tions analogous to those used forP(tPuR). To explain the
different power-law regions in the behavior ofP(tC), we use
the convolution

P~ tC!5E P~ tCuR!F~R!dR5E P~ tPuR!RF~R!dR,

~30!

where Eq.~17! has been taken into account.
In Eq. ~29!, times tC* and tC

3 are dependent onR and,

therefore, the size of the scaling regionP(tCuR);tC
2g(1)

is R
dependent as well. This is an important difference betw
the constant current and constant pressure cases, becaus
the cause of the existence of regions IIIC and IVC with ex-
ponents that differ from each other and from the exponen
region IIIP . TheR dependence of the size of the region is
p-

n
it is

f
s

follows: asR increases,tC* increases, buttC
3 decreases. Fo

large enoughR, denoted here byR3 , these two times coin-

cide, and only the scalingtC
2g(2)

is present. The resistanceR3

scales as a function of the crossover timetP
3 as R3

;(tP
3)1/dR and, ultimately, in terms ofl as R3;ld3 /dR.

Also, there is a specific time, denoted here byM, associated
with this point of coincidence, where only the power-la

decay withtC
2g(2)

survives. InsertingR3 into tC* ;RdR21 ~or
alternatively intotC

3;R21tP
3), we obtain

M;l (dR21)d3 /dR. ~31!

It is now possible to explain the existence of regions IIC
and IVC . For timestC,M , the convolution integral in Eq
~30! has an upper limit obtained by the relationtC;RdR21

and, consequently, the expression becomes
4-10
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P~ tC!;tC
2g(1)E t

C

1/(dR21)

R2(dR21)1g(1)(dR21)2gRdR.

~32!

If the exponent oftC after integration is positive, only the
upper limit is relevant and the integral yieldsP(tC)
;tC

(22dR2gR)/(dR21) . Otherwise, the integral is finite an

P(tC);tC
2g(1)

. For region IIIC , the scaling behavior is

P(tC);t
C

2gC
(1)

, implying that

gC
(1)5minH dR1gR22

dR21
,g (1)J . ~33!

The predicted value forgC
(1) is different than the measure

quantity, although it is within the error bars. This discre
ancy is associated with the simplifications made in o
theory, which do not reflect the fact that, fortC,M , the
highest contribution toP(tC) comes from lower values ofR,
andF(R) in this range decays with an exponentgR smaller
than 2.1@note the rounded shape ofF(R) near its peak in
Fig. 8#. Therefore, with a smaller effective value ofgR , the
exponentgC

(1) acquires a smaller value as well.
As it follows from the behavior ofP(tPuR), for times

tC.M , P(tCuR) scales astC
2g(1)

for small values ofR and as

tC
2g(2)

for largerR. The transition between the two situation
occurs whentC5tC

3 , and since this last quantity scales
R21, tC;R21 and the upper limit of the integral for th

regimetC
2g(1)

is R;tC
21 . Therefore, the convolution Eq.~30!

is written as

P~ tC!;tC
2g(1)E tC

21

R2(dR21)1g(1)(dR21)2gRdR

1tC
2g(2)E

tC
21

Rmax
R2(dR21)1g(1)dR2g~2!2gRdR.

~34!

Once again, by considering the value of the exponents a

integration, given thatP(tC);t
C

2gC
(2)

, we obtain for region
IVC

gC
(2)5min$~g (1)21!dR2gR12,g (1)%. ~35!

This result is valid for a given value ofl due to the depen
dence ofg (1) on this parameter. At the limit of very largel,
application of the equal-time theorem indicates thatgC

(2) ap-
proachesgC

(1) , or

gC
(2)→gC

(1) @l→`#, ~36!

which corresponds to Eq.~59!. See Sec. VI E for details.
BecausetC

3;R21, as R decreases,tC
3 increases. Conse

quently, the transition ofP(tCuR) to the scalingP(tCuR)

;tC
2g(2)

occurs at later times for smallerR. Since the mini-
mum R possible isRmin , the crossovertC

3 has an upper
05631
-
r

er

bound, denoted here byN. The form of N is determined
throughP(tCuR5Rmin) and it is equal totC

3 for this particu-
lar distribution, or

N;tC
3;Rmin

21 tP
3;ld3. ~37!

For tC.N, we haveP(tCuR);tC
2g(2)

. Using this form of
P(tCuR) in the convolution Eq.~30! we obtain P(tC)

;tC
2g(2)

. The upper limit of integration is againRmax. Thus,
for region VC , we have

gC
(3)5g (2). ~38!

This exponent is equal to that obtained for region IVP .
Now we derive the expression for the first crossover ti

M, which separates regions IIIC and IVC . According to Eq.
~31!

tC
(1)5M;ld3(dR21)/dR. ~39!

Comparing this with the definition fortC
(1) given in Sec. V,

we obtain

dC
(1)5d3~dR21!/dR . ~40!

The second crossover, according to Eq.~37!, occurs at
tC

(2)5N and obeys the scaling

tC
(2);ld3, ~41!

which, in turn, implies that

dC
(2)5d3 . ~42!

D. Long-time regime for constant pressure
and constant current

As a first approximation, we can assume that functio
P(tP) andP(tC), for a given ratiol, have no dependence o
the system sizeL. However, our numerical simulations sug
gest a weak dependence of exponentsgP

(2) and gC
(3) on the

system sizeL. These exponents express only the long-tim
behavior~large tP and tC or alternatively, regions IVP and
VC) of the distributions. The values of these exponents w
found to be the same, since bothgP

(2) and gC
(3) are equal to

g (2). Consequently, this means thatg (2) is a function ofL.
Based on the multifractal nature of flow in porous media@35#
and, particularly, on the results obtained in Refs.@36,47#, we
propose an argument on howg (2) depends onL. Since the
scaling forms forP(tC) andP(tP) are the same at long time
~regions IVP and VC), for the rest of this section we intro
duce notationt̃ to represent bothtP and tC , because the
following argument applies to both distributions.

Barthélémy et al. @36# studied the nature of the distribu
tion of tracer velocities$v i% in a cluster connecting two
points in percolation, and found that it has multifractal pro
erties. Particularly,P̃(v i);v i

211a/ log10L , wherev i is the ve-
locity of the tracer through bondi, anda is a constant. What
is the consequence of this distribution in terms of our pro
4-11
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LÓPEZ et al. PHYSICAL REVIEW E 67, 056314 ~2003!
lem? From the rules of the simulation, we havet̃ i51/v i and,
therefore, the distributions of both time and velocity are
lated by P̃(v i)dv i5 P̃( t̃ i)d t̃ i . If a tracer travels through a
bond with a velocityv i that is among the lowest velocities o
the realization, then it is true thatt̃' t̃ i i.e., the total time of
the tracer is approximately equal to the time it takes to p
the slowest bond. ThenP̃( t̃ )' P̃( t̃ i) and

P̃~ t̃ !' P̃~ t̃ i !5 P̃~v i !
dv i

d t̃ i

. ~43!

Given that the tracers choose to travel through a partic
bond with a probabilityproportional to the value of the ve-
locity in that bond, we then have to modify the distributio
P̃(v i) for v i P̃(v i) to take this into account. Therefore, w
obtain a new distributionP(v i)[v i P̃(v i), which equals
P(v i)5v i

a/ log10L . The corresponding time distribution t

P(v i) is calledP( t̃ i) and satisfies

P~ t̃ i !5v i P̃~v i !
dv i

d t̃ i

5v i
a/ log10L

1

t̃ i
2

5 t̃ 222a/ log10L. ~44!

Since we are treating the case fort̃' t̃ i , P( t̃ )5P( t̃ i). Prob-
ability distributionP( t̃ ) is the distribution satisfied for very
large t̃ in our problem, which means thatP( t̃ ); t̃ 2g(2)

, or

g (2)521a/ log10L. ~45!

In Fig. 12, we find the value ofg (2) as a function of
1/log10L, measured from simulations, for several values
the ratiol. Data regression for these results yields the
pression

FIG. 12. Value of the tail exponent2g (2) as a function of
1/log10L, whereL corresponds to the system size of the simulati
Each symbol represents the succession of values ofg (2) for a given
ratio l, with the longest curve corresponding to ratio 4 and
shortest to ratio 32. The thick straight line represents the le
squares fit of thel54 case, which yields a line of valueg (2)

52.0810.81/log10L, as stated in the text.
05631
-

s

ar

f
-

g (2)52.0810.81
1

log10L
. ~46!

The agreement between the predicted and the empirica
sults suggests that we have reached a regime where the
eling time values are dominated by the times on these bo
This regime starts for timestP at constant pressure andtC

(2)

at constant current. These times, in turn, scale withl with
exponentsdP52.7860.15 anddC

(2)52.9060.09, which are

close to each other and to the quantitiesd3 anddB1m̃. This
scaling is consistent with the hypothesis that the long-ti
regime appears when most of the fluid inside the cluster
been displaced and only the slowest parts of the cluster
preserve some original fluid. Since there are only two st
nation points for the homogeneous case of Sec. III,P(t8) is
characterized by an exponential decay. This is in contras
the p5pc case where a multifractal spectrum of stagnat
points is present, generating a power-law forP( t̃). However,
the long-time regime of the homogeneous case emerges
time that scales asldl, with dl53, and since atp51, dB

52, andm̃51, this becomes consistent with our picture.
It is important to point out that the power-law behavi

we observe implies that thek momentŝ t̃ C
k & of the distribu-

tion P(tC) @and the equivalent forP(tP)] diverge for all
sufficiently largek. This appears to be in contrast with earli
work @15#, where the high current limitQ→` has finite
moments for allk in a finite system. However, this appare
discrepancy is in fact due to the different conditions that
being considered. In Ref.@15#, both convective and diffusive
effects are present, and all tracers on a system are ab
travel and eventually leave, even from very slow bon
making the effect of the stagnation points negligible, a
generating an exponential decay for the traveling time pr
ability distribution. On the other hand, if no diffusion i
present, as it is the case here, the presence of the multifr
distribution of the velocities in the bonds generates a pow
law tail that makes the moments divergent; the tracers can
diffuseaway from the stagnation points.

E. The full scaling forms of P„tP… and P„tC…

The results obtained in Secs. V and VI allow us to write
full set of scaling ansatz for the traveling time probabili
distributions under both constant current and constant p
sure conditions. The ansatz takes into account the reg
present in each of the distributions, as well as the short-t
cutoff ~beforet85tbr8 ). For the cutoff, we follow closely the
arguments presented in Ref.@13#, where this behavior is ac
counted for by the use of a stretched exponential functio

For constant pressure, we write

P~ tP!;t
P

2gP
(1)

FP~ tP!GS tP

ldP
D , ~47!

where functionsFP(x) andG(x) have the behaviors

FP~x!;exp~2bx2f!, ~48!

.

st
4-12
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and

G~x!;H const, x!1

x2gP
(2)

1gP
(1)

, x@1,
~49!

and constantsb andf are fitted by the data. Forf, the data
extracted from Fig. 2~a! yield f521.4260.03. Exponents
gP

(1) , gP
(2) , and dP are given by Eqs.~24!, ~26!, and ~28!,

respectively. In the unscaled coordinates,P(t,r ,L) under
constant pressure is

P~ t,r ,L !;S t

r dB1m̃D 2gP
(1)

FPS t

r dB1m̃D GS t

LdPr 2dP1dB1m̃D .

~50!

For the case of constant current, we have

P~ tC!;t
C

2gC
(1)

FC~ tC!H1S tC

ldC
(1)D H2S tC

ldC
(2)D . ~51!

FunctionFC(x) corresponds to a stretched exponential

FC~x!;exp~2cx2u!, ~52!

where again constantsc and u are fitted by the data. By
completing the necessary transformations on Fig. 2~b!, we
obtainu521.4960.01. FunctionsH1 andH2 are given by

H1~x!;H const, x!1

x2gC
(2)

1gC
(1)

, x@1
~53!

and

H2~x!;H const, x!1

x2gC
(3)

1gC
(3)

, x@1.
~54!

Once again, exponentsgC
(1) , gC

(2) , gC
(3) , dC

(1) , and dC
(2) are

given by the Eqs.~33!, ~35!, ~38!, ~40!, and ~42!, respec-
tively. For the unscaled coordinates, we find

P~ t,r ,L !;S t

r dB
D 2gC

(1)

FCS t

r dB
D H1S t

LdC
(1)

r 2dC
(1)

1dB
D

3H2S t

LdC
(2)

r 2dC
(2)

1dB
D . ~55!

An additional constraint that Eq.~51! has to satisfy is tha
of the equal-time theorem~we treat the scaled coordinate
example!. The flow of tracers occurs only on the backbone
the percolation clusters, which has volume proportional
MB , and the total tracer currentQ is unity. Since we use al
backbones that connect pointsA and B, without requiring
that they percolate throughout the entire systemL3L, we
expect that the average time^tC& scales withl exactly in the
same way aŝMB& scales for a givenl.

The problem of the distribution of backbone massesMB
of a percolation cluster defined between two pointsA andB,
05631
f
o

separated by a distancer, for a given system of sizeL3L, is
treated in Ref.@48#, and it is predicted that

^MB&;
LdB

lc
, c50.3760.02. ~56!

Therefore, applying the equal-time theorem,

^tC&5
^t&

r dB
;

^MB&

r dB
;ldB2c. ~57!

Calculating^tC& from Eq. ~51!, we find that it scales as a
power oflj, wherej depends on the exponents involved
Eq. ~51!. Noting thatgC

(2) has a decreasing value that isl
dependent and that this regime extends totC

(2);ld3, to sat-
isfy Eq. ~57!, j must satisfy

j5dB2c5~22gC
(2)!d3 , ~58!

which implies thatgC
(2)'1.55, very close to the value o

exponentgC
(1) . Therefore, we expect that

gC
(2)→gC

(1) @l→`# ~59!

and the power-law regions IIIC and IVC become one region
with exponentgC

(1) extending from the maximum ofP(tC) to
the crossover timetC

(2) .
Finally, regarding the validity of our results in true field

size porous media, we hypothesize that the form of the s
ing ansatz presented still holds, even if the values of
exponents change. This issue must be resolved by additi
studies.

VII. CONCLUSIONS

We establish that the distributions of traveling times ob
the general scaling relationsP(t,r ,L)5(1/r z)P(t/r z,1,l),
and the production curve satisfiesC(t,r ,L)5C(t/r z,1,l).
For constant pressure conditions,z5dB1m̃, and for constant
current,z5dB . This relates the scaling of the traveling tim
to the scaling of two basic cluster properties: backbone
conductivity.

Using the rescaled timestP[t/r dB1m̃ and tC[t/r dB, we
have determined the dependence ofP(tP)5P(tP,1,l) and
P(tC)5P(tC,1,l) on the geometric parameterl and have
observed several power-law regions. We obtain the ex
nents for the power-law regions and crossover times
P(tP) and P(tC) by convolution of functionsP(tPuR) and
F(R), expressed as functions of exponentsgR , dR , d3 ,
g (1), andg (2). The crossover times themselves scale as p
ers of ratiol. We propose relations betweendR andd3 and
the fundamental percolation exponentsdB and m̃. Using ar-
guments based on multifractality, we also propose the r
tion g (2)521a/ log10L. The exponentg (1) is not yet ex-
plained ~see Table II!. The full scaling forms ofP(tP) and
P(tC) are expressed in two scaling ansatz@Eqs. ~47! and
~51!# that contain all their observed regions and crosso
times.
4-13
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For the longest times, the crossover occurs for thep51
case at a time that scales asldl, with dl53, which can be
interpreted asdB1m̃ under homogeneous conditions. For t
p5pc case, the crossover to the long-time region scales
ld3, regardless of the pumping conditions~constant current
or constant pressure!. We hypothesize thatd3 anddB1m̃ are
the same exponent and propose that the transition to the
time regime occurs similarly at different values of the occ
pation probabilityp.
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APPENDIX: ANALYTICAL SOLUTION
FOR THE HOMOGENEOUS CASE

The equations for the stationary ideal flow@43# are¹2P

50 andvW 5¹W P, whereP is the pressure,vW is the velocity,
and¹2 is the Laplace operator. In two dimensions, the so
tion is given by an arbitrary analytical functionf (z) of com-
plex variable z5x1 iy , and P(x,y)5Ref (z), vx
5Ref 8(z), andvy52Imf 8(z). The equation of a streamlin
is given byf5Imf (z), wheref is a parameter. The flow
between two wellsA andB, located at points (6r /2,0) in the
circular reservoirx21y2<L2/4, is given by

f ~z!5 lnS z1
r

2D2 lnS z2
r

2D1 lnS z1
L2

2r D2 lnS z2
L2

2r D .

~A1!

The circular boundary of the reservoir satisfies the equa
f5p. The fastest streamline connectingA and B corre-
sponds tof50 and an arbitrary streamline forms anglesf
and (p2f) with the x axis at pointsA andB. The traveling
time along a streamline can be found as a contour integ

t5E
A

B dz

f 8~z!
5E

A

Bdx

vx

5E
A

Bdy

vy

, ~A2!

wheref 8(z) is the complex conjugate off 8(z). The traveling
time t(f) can also be found by differentiation of the ar
S(f) between two streamlines corresponding to differ
values off,

t~f!5
dS~f!

df
, ~A3!

which is another manifestation of the equal-time theore
The concentration of oil arriving at wellB at time t, i.e., the
production curveC(t,r ), is given by the inverse function
f(t)

C~ t,r !5
p2f~ t !

p
. ~A4!

In the unbounded caseL→`, the streamlines are circles an
t(f) is given by an elementary formula
05631
as

ng
-

-

n

l

t

.

t5
r 2

2sin2f
S 12

f cosf

sinf D . ~A5!

Thus t has dimensionality of area and, therefore, in the f
lowing, we use the scaled timet85t/r 2. Accordingly,C(t,r )
has the scaling property

C~ t,r !5C~ t85t/r 2,1!. ~A6!

In the interest of briefness, we useC(t8)[C(t8,1). For
small f→0, t8 is given by the expansion

t85
1

6
1

1

15
f21O~f4!. ~A7!

For largef→p, t8→` and

t85
p

2~p2f!3
@11O„~p2f!2

…#. ~A8!

The breakthrough timetbr8 corresponds to the fastest stream
line f50 and thus is given by

tbr8 5 lim
f→0

t8~f!5
1

6
. ~A9!

Immediately after breakthrough, the concentration of
drops as

C~ t8!512KAt82tbr8 1O„~ t82tbr8 !3/2
…, ~A10!

whereK5A15/p. Whent8→`, the concentration decays a
a power-law,

C~ t8!5S 1

2p2t8
D 1/3

1OS 1

t8
D . ~A11!

The crossover time from the initial fast decay to the slo
power-law decay is approximately equal to timet1/28 , defined
as the time when the concentration drops by a factor of 2
t1/28 5t8(p/2)51/2.

In the bounded case, the production curve for scaled t
depends only on the ratiol[L/r , and similar to the result of
Eq. ~A6!, we find that

C~ t,r ,L !5C~ t85t/r 2,1,l!. ~A12!

Production curveC(t8,l)[C(t85t/r 2,1,l) can be ex-
pressed via elliptical functions. Integrating Eq.~A2! along
the fastest streamline gives

tbr8 5
11l61~12l2!3

12~11l2!
1

l~12l2!2

8~11l2!
lnS l21

l11D ,

~A13!

which in the limit l→` yields

tbr8 5
1

6
2

2

15
l221o~l22!. ~A14!
4-14
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ConstantK in the initial fast decay can be obtained by e
panding the equations of short streamlines in powers off,
resulting in lengthy elementary functions ofl. Expanding
the latter in powers ofl21 yields

K5
A15

p F11
10

7
l221o~l22!G . ~A15!

The half-time is given by integration along thef5p/2
streamline,

t1/28 5
1

4 H 11l22
~11l2!3

4l
arcsinF 4

~11l2!Al2161l22G J
5

1

2
1O~l22!. ~A16!

Finally, as t8→` and f→p, the entire reservoir is swep
out except in the vicinity of the two stagnation points
(6L/2,0), where the velocity is equal to zero. Integrati
Eq. ~A2! along the reservoir boundary and the segments c
necting the wells and stagnation points, with the exception
a small vicinity of the stagnation point of orderAp2f,
gives

t85to82t,8 ln~p2f!1o~1!, ~A17!
-

.

,

e

,

v-

R.

05631
n-
f

whereto8 and t,8 are functions ofl,

t,85
1

8

l~l221!2

~l211!
5

l3

8
1O~l! ~A18!

and

to85t,8F2~223l23l2110l313l423l5!

3l~l221!2

1 ln
16l~l211!

~l221!~l11!2G . ~A19!

This yields the exponential decay ofC(t8) at t8→`

C~ t8!5
1

p
expF2

~ t82to8!

t,8
G @11o~1!#, ~A20!

wheret,8 plays the role of the characteristic time. Ift,8.t1/28
(l@1), an intermediate power-law decay is present betw
t1/28 and t,8 , with the scaling form of Eq.~A11!. In this case,
t,8 also plays the role of the crossover time from the pow
law to the exponential decay.
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